

COORDINATION PROCESS OF LEARNING ACTIVITIES PR/CL/001

E.T.S. de Ingenieria de Sistemas Informaticos

SUBJECT

615001060 - Embedded Systems Modelling

DEGREE PROGRAMME

61IW - Grado En Ingenieria Del Software

ACADEMIC YEAR & SEMESTER

2023/24 - Semester 2

Index

Learning guide

1. Description	1
2. Faculty	1
3. Prior knowledge recommended to take the subject	2
4. Skills and learning outcomes	3
5. Brief description of the subject and syllabus	4
6. Schedule	6
7. Activities and assessment criteria	8
8. Teaching resources	9
9. Other information	10

1. Description

1.1. Subject details

Name of the subject	615001060 - Embedded Systems Modelling
No of credits	6 ECTS
Туре	Optional
Academic year ot the programme	Fourth year
Semester of tuition	Semester 8
Tuition period	February-June
Tuition languages	English
Degree programme	61IW - Grado en Ingenieria del Software
Centre	61 - Escuela Tecnica Superior De Ingenieria De Sistemas Informaticos
Academic year	2023-24

2. Faculty

2.1. Faculty members with subject teaching role

Name and surname	Office/Room Email		Tutoring hours *
Gustavo Adolfo Hernandez Peñaloza (Subject coordinator)	4408	gustavo.hernandez.penaloza @upm.es	Sin horario. Schedule not defined yet. Mentoring schedule will be published at the beginning of the semester according to the needs.

			Sin horario.
			Schedule not
			defined yet.
loso Carlos Camazo Roal	4209	iococarlos damaza@upm os	Mentoring schedule
Juse Carlos Garriazo Real	4300	josecanos.gamazo@upm.es	will be published at
			the beginning of the
			semester according
			to the needs.
			Sin horario
			Schedule not
			Schedule not defined yet.
louior Coroio Mortin	4410	iovior goroiom@upm.co	Schedule not defined yet. Mentoring schedule
Javier Garcia Martin	4419	javier.garciam@upm.es	Schedule not defined yet. Mentoring schedule will be published at
Javier Garcia Martin	4419	javier.garciam@upm.es	Schedule not defined yet. Mentoring schedule will be published at the beginning of the
Javier Garcia Martin	4419	javier.garciam@upm.es	Schedule not defined yet. Mentoring schedule will be published at the beginning of the semester according

* The tutoring schedule is indicative and subject to possible changes. Please check tutoring times with the faculty member in charge.

3. Prior knowledge recommended to take the subject

3.1. Recommended (passed) subjects

- Fundamentos De Ingenieria Del Software

3.2. Other recommended learning outcomes

The subject - other recommended learning outcomes, are not defined.

4. Skills and learning outcomes *

4.1. Skills to be learned

CT12 - Use of information and communication technologies : Use information and communication technologies in the field of engineering.

CT9 - Social and environmental responsibility: Knowledge, skills and attitudes to integrate in the professional activity, in a responsible and balanced way, the social, environmental and ethical aspects inherent to computer engineering.

4.2. Learning outcomes

RA455 - - Use appropriate programming tools to implement multitasking systems that follow the structure of an embedded system.

RA456 - Develops all stages of an embedded system's lifecycle

RA457 - Select the most suitable diagrams for modelling an embedded system, integrating the hardware and software parts.

RA454 - Use concurrent programming in the context of embedded systems

RA458 - Use modelling languages to specify and design an embedded system.

RA459 - Identifies the requirements and technological solutions that enable the development of embedded systems

RA460 - Use development tools for the integration of all elements required for an embedded system.

RA257 - Develops the HW and SW components of an embedded system.

RA261 - Use modelling languages to specify and design an embedded system with real-time constraints.

RA10 - Gathers and synthesises information from bibliographic sources and lectures in English

* The Learning Guides should reflect the Skills and Learning Outcomes in the same way as indicated in the Degree Verification Memory. For this reason, they have not been translated into English and appear in Spanish.

5. Brief description of the subject and syllabus

5.1. Brief description of the subject

Embedded Systems Modelling is aimed at endowing students with the background to select the appropriate diagrams to develop a model for an embedded system according to its characteristics and needs.

The students will develop in an appropriate manner a complete lifecycle for an embedded system including the use of model language to create diagrams, with special attention to the requirements for systems that interact with hardware and sensors (embedded systems, real-time systems, etc).

The students will obtain the knowledge to apply appropriate validation techniques for the diverse diagrams' model. Furthermore, students will learn the methods to develop code enabled for the implementation of the system

5.2. Syllabus

- 1. Introduction to Embedded System Modelling
 - 1.1. Goals and principles of Modelling Languages
 - 1.2. Introduction to Modelling Languages
 - 1.3. Characteristics of embedded system programming
 - 1.4. Tools to develop system modelling
- 2. System Requirements Diagrams
 - 2.1. Introduction (scope, concepts and goals)
 - 2.2. Systems engineering
 - 2.3. Features and requirements specification
 - 2.4. Relationships between requirements and other components
 - 2.5. Graphical representation
- 3. Modelling the system Architecture

- 3.1. Package Diagrams
- 3.2. Internal Block Diagrams
- 3.3. Block Definition Diagram (BDD)
 - 3.3.1. Block Structural Properties
 - 3.3.2. . Block behaviour properties
 - 3.3.3. Subsystem design issues and Structuring Criteria
 - 3.3.4. Implementing BDD
- 4. Modelling the system behaviour
 - 4.1. Review of Activity Diagrams and Sequence Diagrams
 - 4.2. State Machine Diagrams
 - 4.2.1. States and Transitions
 - 4.2.2. Concurrency, hierarchy and history
 - 4.3. Implementing State machine diagrams
- 5. Architecture and conceptual modelling
 - 5.1. Introduction to conceptual modelling
 - 5.2. Review of Use Case Diagrams and Class diagrams
 - 5.3. Architectural model views
 - 5.3.1. System quality attributes
 - 5.3.2. Kruchten's 4+1 views model
 - 5.3.3. Styles and patterns
- 6. Model-Driven Development (MDD) Engineering for embedded systems
 - 6.1. Concepts of MDE and MDD
 - 6.2. Model Transformation
 - 6.3. Domain-Specific Modelling (DSM) and Languages (DSL)
 - 6.4. Tools for DSM
- 7. Reliability and fault tolerance
 - 7.1. Concepts about security, safety and fault-tolerance
 - 7.2. Validation and Verification of embedded systems
 - 7.3. High Integrity Systems: concepts and standards

6. Schedule

6.1. Subject schedule*

Week	Classroom activities	Laboratory activities	Distant / On-line	Assessment activities
	T1: Introduction to Embedded System	W1: Introduction to Modelio (Or other	Group Questionnaire	
	Modelling	tool for laboratory works)	Duration: 00:15	
	Duration: 02:00	Duration: 02:00	Additional activities	
	Lecture	Laboratory assignments		
	T2 System Requirements Diagrams (I)	Coding Basis for the case study		
	Duration: 01:00	Duration: 02:00		
	Lecture	Laboratory assignments		
2				
	Cased Study Presentation			
	Duration: 01:00			
	Additional activities			
	T2 System Requirements Diagrams (II)	Coding Basis for the case study		
3	Duration: 02:00	Duration: 02:00		
	Lecture	Laboratory assignments		
	T3: Modelling the system Architecture (I)	W2: Programming a system defined by		Moodle Questionnaire: T1 & T2 (RA10,
	Duration: 02:00	Block Diagrams		RA457).
	Lecture	Duration: 02:00		Other assessment
4		Laboratory assignments		Continuous assessment
				Presential
				Duration: 00:15
	T3: Modelling the system Architecture (II)	W2: Programming a system defined by		
	Duration: 02:00	Block Diagrams		
5	Lecture	Duration: 02:00		
		Laboratory assignments		
	T4: Modelling the system behaviour (I)	W2: Programming a system defined by		
	Duration: 02:00	Block Diagrams		
6	Lecture	Duration: 02:00		
		Laboratory assignments		
	T4: Modelling the system behaviour (II)	WP3: Programming a system specified		Moodle Questionnaire: T3 & T4 (RA10,
	Duration: 02:00	by State Machine Diagrams		RA457, RA458).
	Lecture	Duration: 02:00		Other assessment
7		Laboratory assignments		Continuous assessment
				Presential
				Duration: 00:15
				Midterm Exam 1: T1, T2, T3 & T4. (RA AII)
				Written test
8				Continuous assessment
				Presential
				Duration: 01:30
	T5: Architecture and conceptual	WP3: Programming a system specified		
	modelling (I)	by State Machine Diagrams		
9	Duration: 02:00	Duration: 02:00		
	Lecture	Laboratory assignments		
	1		1	

	T5: Architecture and concentual	WP3: Programming a system specified		
	modelling (II)	hy State Machine Diagrams		
10	Duration: 02:00	Duration: 02:00		
	Locture			
	Lecture	Laboratory assignments		
	T6: Model-Driven Development (MDD)	W4: Modelling a complete embedded		
	Engineering for embedded systems (I)	system: Selection of the appropriate		
11	Duration: 02:00	diagrams and developing and validating		
	Lecture	the model		
		Duration: 02:00		
		Laboratory assignments		
	T6: Model-Driven Development (MDD)	W4: Modelling a complete embedded		
	Engineering for embedded systems (II)	system: Selection of the appropriate		
	Duration: 02:00	diagrams and developing and validating		
12	Lecture	the model		
		Duration: 02:00		
		Laboratory assignments		
<u> </u>	T7: Reliability and fault tolerance (I)	W4: Modelling a complete embedded		
	Duration: 02:00	system: Selection of the appropriate		
	Locture	diagrams and developing and validating		
13	Lecture	the model		
		Duration: 02:00		
		Laboratory assignments		
	T7: Reliability and fault tolerance (II)	W4: Modelling a complete embedded		Moodle Questionnaire: T5, T6 & T7
	Duration: 02:00	system: Selection of the appropriate		(RA10, RA459, RA458).
14	Lecture	diagrams and developing and validating		Other assessment
'4		the model		Continuous assessment
		Duration: 02:00		Presential
		Laboratory assignments		Duration: 00:15
			Seminar (optional)	Case Study presentation: Final Report
			Duration: 01:00	(RA: AII)
			Additional activities	Group presentation
				Continuous assessment
				Presential
				Duration: 00:20
15				
				Exam 2: T5, T6 & T7. (RA All)
				Written test
				Continuous assessment
				Presential
				Duration: 01:30
- 10				
16				
				Final Exam (only for students who did
				not manage to pass the continous
				assessment (RA: All).
17				Written test
				Final examination
				Presential
1			1	Duration: 03:00

Depending on the programme study plan, total values will be calculated according to the ECTS credit unit as 26/27 hours of student face-to-face contact and independent study time.

* The schedule is based on an a priori planning of the subject; it might be modified during the academic year, especially considering the COVID19 evolution.

ANX-PR/CL/001-01 Learning Guide

7. Activities and assessment criteria

7.1. Assessment activities

7.1.1. Assessment

Week	Description	Modality	Туре	Duration	Weight	Minimum grade	Evaluated skills
4	Moodle Questionnaire: T1 & T2 (RA10, RA457).	Other assessment	Face-to-face	00:15	3%	0 / 10	CT12
7	Moodle Questionnaire: T3 & T4 (RA10, RA457, RA458).	Other assessment	Face-to-face	00:15	3%	0 / 10	CT12
8	Midterm Exam 1: T1, T2, T3 & T4. (RA All)	Written test	Face-to-face	01:30	25%	4 / 10	CT12
14	Moodle Questionnaire: T5, T6 & T7 (RA10, RA459, RA458).	Other assessment	Face-to-face	00:15	4%	0 / 10	CT12
15	Case Study presentation: Final Report (RA: All)	Group presentation	Face-to-face	00:20	35%	5/10	CT9 CT12
15	Exam 2: T5, T6 & T7. (RA All)	Written test	Face-to-face	01:30	30%	4 / 10	CT12

7.1.2. Global examination

Week	Description	Modality	Туре	Duration	Weight	Minimum grade	Evaluated skills
17	Final Exam (only for students who did not manage to pass the continous assessment (RA: All).	Written test	Face-to-face	03:00	100%	5/10	CT9 CT12

7.1.3. Referred (re-sit) examination

Description	Modality	Туре	Duration	Weight	Minimum grade	Evaluated skills
Final Exam: All syllabus and practical case (RA: All)	Written test	Face-to-face	02:00	100%	5 / 10	CT9 CT12

7.2. Assessment criteria

The student reaching a mark equal or larger than 5 via the continuous evaluation will be exempt of the final exam.

Students who do not pass the progressive assessment will have the opportunity to pass the course by means of the final exam, which will count for 100% of their mark. To do so, they must request this possibility to the teachers of the subject within 2 months from the beginning of the term in which the subject is taught.

EXTRARODINARY EXAM

The extra-(July) exam will consist of a Final exam that will count for 100% of the final grade. In these final exams (June and July) the student must demonstrate the same skills as those required in the progressive assessment, both in theory and in practice. It means that practical part will be composed of questions related to the case study. Students must reach a mark equal or larger than 5 in the final exam to pass.

8. Teaching resources

8.1. Teaching resources for the subject

Name	Туре	Notes
Lenny Delligatti. 2013. SysML		
Distilled: A brief Guide to the	Bibliography	
Systems Modelling Language (1st	Dibilography	
ed) Addison-Wesley Professiona		
Designing Concurrent, Distributed,		
and Real-Time Applications with	Dibliggrophy	
UML. Hassan Gomaa. Addison-	Былодгарту	
Wesley		
Sanford Friedenthal, Alan Moore,		
and Rick Steiner. 2008. A Practical		
Guide to SysML: Systems Modeling	Piblicgrophy	
Language. Morgan Kaufmann	ыыюдгартту	
Publishers Inc., San Francisco, CA,		
USA		

Beydeda, S., Book, M. & Gruhn V.,		
Model- Driven Software	Bibliography	
Development, Springer, 2005		

9. Other information

9.1. Other information about the subject

TRANSLATIONS

RA10 Recopila y sintetiza información de fuentes bibliográficas y de clases magistrales en inglés / Gathers and and synthesises information from bibliographic sources and lectures in English

RA458 Utiliza lenguajes de modelado para especificar y diseñar un sistema empotrado // Uses modelling languages to specify and design an embedded system

RA454 Utiliza la programación concurrente en el contexto de los sistemas empotrados. // Uses concurrent programming in the context of embedded systems.

RA456 Desarrolla todas las etapas del ciclo de la vida de u sistema empotrado // Develops all lifecycle stages of an embedded system.

TRANSVERSAL COMPETENCES

This subject, aims at covering the aforementioned competences by combining the theoretical knowledge with it's application in practice settings. The students are actively working in the case study where they have the opportunity to apply the techniques for close-to-market problems. In order to cope with these competences, the "

Resultados de aprendizaje /Learning Results (RA)" were defined: The interrelation between the concurrent programming applied to embedded systems and real-time systems for optimal performance. For the competences training, the following activities are foreseen:

1) Release of the subject contents including, slides presentation, bibliography and references with the ambition of making the links between engineering, environment and social responsibilities.

2) A talk about the social impact and environmental of the case study implemented in the subject will allow them to create consciousnesses of the impact while aligning with the United Nations Sustainable Development Goals SDG.

The results will be evaluated in the "Project presentation", where studies will have to incorporate in the report an analysis and an essay about the impact that the developed system will have for some of the society fields including economy, social wellbeing, human rights, environment). This part counts for a 20% of the project mark