Seminario de Investigación 17-18

Fireworks Algorithm applied to Smart Cities field & Optimizations

PhD Candidate: Clemencio Morales Lucas

PhD Director: Dr. Luis Fernando de Mingo López
Index of Contents

1. The Natural Computing Paradigm & Smart Cities
2. Fireworks Algorithm
3. Current Research
4. Investigation Results
5. Fireworks Algorithm Applications
6. Conclusions & Discussion
7. Q&A
Index of Contents

1. The Natural Computing Paradigm & Smart Cities

2. Fireworks Algorithm

3. Current Research

4. Investigation Results

5. Fireworks Algorithm Applications

6. Conclusions & Discussion
1. The Natural Computing Paradigm
1. The Natural Computing Paradigm (II)

- Natural Computing encloses three classes of algorithms:

1. Those that take inspiration from nature for the development of novel problem-solving techniques.

2. Those that are based on the use of computers to synthesize natural phenomena.

3. Those that employ natural materials, such DNA or molecules, to compute.
1. The Natural Computing Paradigm (III)

- Natural Computing spectrum:
1. The Natural Computing Paradigm (IV)

- Darwin, 1859: “Living beings have been forced to a continuous evolutive process looking for survival”

- Natural Selection & Evolution:
1. The Natural Computing Paradigm (V)

- GA: *Set of ordered instructions, that aim to evolve a population to reach a solution (improved population)*

- Genetic Algorithms (GA) have the following set of atomic elements:
1. The Natural Computing Paradigm (VI)

- Genetic Algorithms flux diagram:

- Selection: *Truncation* approach recommended:

\[
\alpha^*_T(s, T)(f_i) = s^*(f_i) = \begin{cases}
0 & \text{if } S(f_i) \leq (1 - T)N \\
\frac{S(f_i) - (1 - T)N}{T} & \text{if } S(f_i - 1) \leq (1 - T)N < S(f_i) \\
\frac{s(f_i)}{T} & \text{else}
\end{cases}
\]
1. The Natural Computing Paradigm (VII)

- Genetic Algorithm sections for Flappy Bird Algorithm:
1. The Natural Computing Paradigm (VIII)

• PSO: Reynolds, 1987: “Technique to optimize a problem due to a meta-heuristic strategy. Iterative improvement of a candidate solution with regards to a pre-stipulated quality criteria”
1. The Natural Computing Paradigm (IX)

- Particle Swarm Optimization (PSO) pseudo-algorithm:

```java
for each (particle within S) {
    position = generateRandomValue(S[i], b_low, b_up);
    position = bestKnownPositionByParticle(S[i]);
    if (f(p) < f(g)) {
        bestGlobalPosition = position;
    }
    speed = generateRandomSpeed(b_low - b_up, b_low - b_up)
}

while(!stopCriteria) {
    for each (particle within S) {
        for each (dimension within d) {
            first_op = omega * v(i, d) + phi_p * r_p;
            second_op = (p(i, d) - x(i, d));
            third_op = phi_g * r_g * (g_d - x(i, d));
            d[i] = first_op * second_op + third_op;
        }
        Position += d[i];
        if (f(xi) < f(pi)) {
            bestParticleLocalPosition = xi;
            if (f(pi) < f(g)) {
                bestGlobalPosition = pi;
            }
        }
    }
}
return bestGlobalPosition;
```
1. The Natural Computing Paradigm (X)

http://www.realflow.com/
1. The Natural Computing Paradigm (XI)

- Dorigo & Di Caro, 1992: “Multi-agent paradigm inspired on the ants idiosyncrasy when searching for livelihood”

- Goss Experiment with *Iridomyrmex humilis* colony:
1. The Natural Computing Paradigm (XII)

- How do all the ants *know* what is the shortest path?

- **Stigmergy**: Collaboration protocol where communication is made due to the accumulation of objects, such as pheromones

\[
p_{ij}^k \begin{cases}
\tau_{ij} & \text{if } j \in N_i \\
0 & \text{if } j \notin N_i
\end{cases}
\]
1. The Natural Computing Paradigm (XIII)

- Urban cores massification ➔ Urgent **improvement** needed
Index of Contents

1. The Natural Computing Paradigm & Smart Cities

2. Fireworks Algorithm

3. Current Research

4. Investigation Results

5. Fireworks Algorithm Applications

6. Conclusions & Discussion
2. Fireworks Algorithm

• FWA: Incremental and iterative search process in a huge solution space.
2. Fireworks Algorithm (II)

Select N initial locations

Set off N fireworks at N locations

Obtain sparks location

Evaluate quality of the locations

Select N locations

Optimal location found

Yes

No

End
2. Fireworks Algorithm (III)

- **FWA versus CPSO** (*Combinatorial Particle Swarm Optimization*) & **SPSO** (*Standard Particle Swarm Optimization*) → 8 Benchmark $f(x)$ over 20 runs:
2. Fireworks Algorithm (IV)

- \bar{x} and σ_x for FWA, CPSO and SPSO on 9 benchmark $f(x)$ → 20 independent runs of 10000 $f(x)$ evaluations:

<table>
<thead>
<tr>
<th>Function</th>
<th>FA’s mean (StD)</th>
<th>CPSO’s mean (StD)</th>
<th>SPSO’s mean (StD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>0.000000 (0.000000)</td>
<td>11857.425781 (3305.973067)</td>
<td>24919.099609 (3383.241523)</td>
</tr>
<tr>
<td>Rosenbrock</td>
<td>19.38330 (11.94373)</td>
<td>2750997504.000000 (1741747548.420642)</td>
<td>5571942400.000000 (960421617.568024)</td>
</tr>
<tr>
<td>Rastrigrin</td>
<td>0.000000 (0.000000)</td>
<td>10940.148438 (3663.484331)</td>
<td>24013.001953 (4246.961530)</td>
</tr>
<tr>
<td>Griewank</td>
<td>0.000000 (0.000000)</td>
<td>3.457273 (0.911027)</td>
<td>7.125976 (0.965788)</td>
</tr>
<tr>
<td>Ellipse</td>
<td>0.000000 (0.000000)</td>
<td>2493945.500000 (1199024.648305)</td>
<td>5305106.500000 (1117954.409340)</td>
</tr>
<tr>
<td>Cigar</td>
<td>0.000000 (0.000000)</td>
<td>122527168.000000 (28596381.089661)</td>
<td>149600864.000000 (13093322.778560)</td>
</tr>
<tr>
<td>Tablet</td>
<td>0.000000 (0.000000)</td>
<td>15595.107422 (8086.792234)</td>
<td>42547.488281 (8232.221882)</td>
</tr>
<tr>
<td>Schwefel</td>
<td>4.353733 (1.479332)</td>
<td>8775860.000000 (1217609.288290)</td>
<td>6743699.000000 (597770.084232)</td>
</tr>
<tr>
<td>Ackley</td>
<td>0.000000 (0.000000)</td>
<td>15.907665 (1.196082)</td>
<td>18.423347 (0.503372)</td>
</tr>
</tbody>
</table>
Index of Contents

1. The Natural Computing Paradigm & Smart Cities

2. Fireworks Algorithm

3. Current Research

4. Investigation Results

5. Fireworks Algorithm Applications

6. Conclusions & Discussion
3. Current Research

- Currently centered on Fireworks Algorithm
- Eleven Benchmarking functions for testing algorithm’s performance

```java
private double ackleyFunction(final double[] inputValues) {
    double aux = 0, result = 0;
    for (int i = 0; i < inputValues.length; i++) {
        result += Math.pow(inputValues[i], DOUBLE_SQUARE_VALUE);
        aux += Math.cos(SQUARE_VALUE * Math.PI * inputValues[i]);
    }
    result = ACKLEY_FUNCTION_NEGATIVE_MULTIPLIER * Math.sqrt(result / inputValues.length);
    result = ACKLEY_FUNCTION_LOWER_BOUND * Math.exp(result);
    aux = -Math.exp(aux / inputValues.length);
    result += ACKLEY_FUNCTION_UPPER_BOUND + Math.exp(DOUBLE_IDENTITY_VALUE) + aux;
    return result;
}
```

\[f(x) = -a \exp \left(-b \sqrt{\frac{1}{d} \sum_{i=1}^{d} x_i^2} \right) - \exp \left(\frac{1}{d} \sum_{i=1}^{d} \cos(c x_i) \right) + a + \exp(1) \]
3. Current Research (II)

• Pre-initialization for Spark generation in FWA

• Hardware warm-up phase for accurate results

• Executing FWA to optimize mathematical functions

• Gaussian Explode (adding a random value from a Gaussian Distribution to each spark’s direction a new area of interest) for FWA Sparks
3. Current Research (III)

- Classic FWA & Pre-initialized FWA are launched

```java
private void launchFWAForAllParameters() {
    for (int i = 1; i <= BenchmarkFunctionConstants.NUMBER_OF_FUNCTIONS; i++) {
        System.out.print(FITNESS + i + SEPARATOR);
        maximumBound = new double[availableDimensions[i - 1]];
        minimumBound = new double[availableDimensions[i - 1]];
        for (int j = 0; j < maximumBound.length; j++) {
            maximumBound[j] = availableBounds[i - 1];
            minimumBound[j] = -availableBounds[i - 1];
        }
        for (int k = 0; k < shiftIndex.length; k++) {
            BenchmarkFunction benchmarkFunction = new BenchmarkFunction();
            benchmarkFunction.setIndexAndShift(i, availableBounds[i - 1] * shiftIndex[k]);
            double avg = 0;
            for (int t = 0; t < NUMBER_OF_ITERATIONS; t++) {
                FireworkAlgorithm fireworkAlgorithm = new FireworkAlgorithm(
                    LOCATIONS_NUMBER, NUMBER_OF_SPARKS,
                    LOW_BOUND_NUMBER, HIGH_BOUND_NUMBER, MAXIMUM_AMPLITUDE_VALUE, GAUSSIAN_SPARKS_VALUE,
                    maximumBound, minimumBound, filePath, benchmarkFunction);
                avg += fireworkAlgorithm.launch();
            }
            avg /= NUMBER_OF_ITERATIONS;
            System.out.print(NEW_LINE + avg);
        }
    }
    System.out.println();
}
```
Index of Contents

1. The Natural Computing Paradigm & Smart Cities
2. Fireworks Algorithm
3. Current Research
4. Investigation Results
5. Fireworks Algorithm Applications
6. Conclusions & Discussion
4. Investigation Results

- Classic FWA for 6 Shifts (iterations) in 12 Fitness calculations:
4. Investigation Results (II)

- Pre-Initialized FWA for 6 Shifts (iterations) in 12 Fitness calculations:

Fitness 1	78630.9791875285	104210.02956264642	119887.85049835381	131573.81130339826	172176.6628978758	197438.2713592046	337108.7771787091
Fitness 2	1378096.5105605469	1217939.50605585406	1515021.1052623462	2045832.3654442176	2619227.542479729	2532139.6595763036	4613281.2906126002
Fitness 3	2.5561141162213668E8	4.0098386511205182E8	6.756625873966776E8	8.625029362234106E8	1.207145263687446E9	1.6962818423289623E9	4.792003363670427E9
Fitness 5	792.1730450304727	840.2933710982547	832.827144019712	1438.066596475276	1602.73331579155	1573.857289035941	2749.558291524064
Fitness 6	358.9404765830502	400.70684762828	422.3786690385915	445.6142116617796	518.40423213165	621.296240306615	811.9978132870777
Fitness 7	1.449632910076408E9	2.4864635165290046E9	3.04512423193476E9	5.103656020653241E9	7.962119953095451E9	9.430240181799067E8	3.251091837974155E10
Fitness 8	186.15021505013607	389.830708789191	827.439931058842	2085.056122119717	4147.59493531317	12478.75370758119	3006.87607513805
Fitness 9	435.11230116609016	359.942295346167	694.94525109795041	1312.60778705835	2382.45972232532	6994.74443173751	14924.330772122154
Fitness 10	0.4916679020876662	0.4941630551640005	0.49552214061975407	0.497132833135547	0.4985155942171041	0.49950467945420535	0.499715291619254
Fitness 11	1296.74881125524	2142.182410697925	2043.006188501836	2943.41830682275	3284.726674467795	5165.509516610583	8275.061493082163
Fitness 12	3986381.226555627	5776834.4065739005	7990955.610401971	6501259.764193256	9187848.875311902	1.525565354759997E7	4.1041761097279236E7

Time elapsed for improved algorithm (ns): 6095082401
4. Investigation Results (III)

- Ahmdal’s Law \(\rightarrow\) Non-Improved Time

\[
\text{Improvement (\%) = } \frac{\text{Improved Time}}{\text{Non-Improved Time}}
\]

Time elapsed for improved algorithm (ns): 6095082401

Ahmdal's Law = Non-Improved time / Improved Time = \(\frac{7572587531}{6095082401} = 124.24093773953886\)

The improved algorithm is a \(24.24093773953886\%\) faster
4. Investigation Results (IV)

• Next investigation path: Searching for a synergy between CPSO & FWA.

• In CPSO, Global Best \((g\text{-best})\) and Personal Best \((p\text{-best})\) are taken into computation.
4. Investigation Results (V)

- Global Best \((g\text{-best})\) and Personal Best \((p\text{-best})\) just take swarm-related data.

- In Nature, the environment plays a central role → **Extrapolation to CPSO & FWA adding E-best:**

- A spark explosion success determines next spark’s exploding point:
Index of Contents

1. The Natural Computing Paradigm & Smart Cities
2. Fireworks Algorithm
3. Current Research
4. Investigation Results
5. Fireworks Algorithm Applications
6. Conclusions & Discussion
FWA+ACO (II)
5. Feasible application for Smart City rural area

Mountain Control Center/Wooded area
5. Feasible application for Smart City (II)

- **Travelling Salesman Problem (TSP):** "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?"

- NP-hard problem in combinatorial optimization
5. Feasible application for Smart City (III)

- Travelling Salesman Problem (TSP) + Ant Colony Optimization (ACO)
- **Massive computation 😞**
- Ants can be used to trim the search tree down 😊
5. Feasible application for Smart City (IV)

- System for endowing intelligence to the UPTS in development:
5. Feasible application for Smart City (V)

- **Genetic Algorithms** to *evolve* a route. Mobile application to:
 - **Inform users about backup routes** in case of systems breakdown
 - **Calculate route** between two points, even if there are blocked sections due to failure
 - **User super-pheromone** for statistical use
5. Feasible application for Smart Space (VI)

- Search for Extraterrestrial Intelligence (SETI)
6. Conclusions & Discussion

- **Citizens** can be seen as *particles* among a huge *swarm*. Natural Computing algorithms are highly mixable.

- PhD investigation efforts currently centered in the **Fireworks Algorithm** and an optimization has been reached
 - FWA with pre-initialization is a 24% faster :-(
 - Investigating synergy between FWA and ACO
6. Conclusions & Discussion

Base
- The Natural Computation paradigm has been investigated, as well as its application in Smart Cities spectrum

Investigation
- A FWA optimization based on pre-initialization scheme has been given, as well as a system for finding & rescuing lost people in rural areas (FWA+ACO)

Development
- FWA speed has been increased by 24% and the synergy between FWA+ACO looks promising.
Seminario de Investigación 17-18

Fireworks Algorithm applied to Smart Cities field & Optimizations

PhD Candidate: Clemencio Morales Lucas
Contact: mail@clemenciomorales.com

PhD Director: Dr. Luis Fernando de Mingo López